![]() | Study programme 2018-2019 | Français | |
![]() | Data Sciences I : visualisation and inference | ||
Activité d'apprentissage à la Faculty of Science |
Code | Lecturer(s) | Associate Lecturer(s) | Subsitute Lecturer(s) et other(s) |
---|---|---|---|
S-BIOG-006 |
|
Language of instruction | Language of assessment | HT(*) | HTPE(*) | HTPS(*) | HR(*) | HD(*) | Term |
---|---|---|---|---|---|---|---|
Français | Français | 25 | 50 | 0 | 0 | 0 | Q1 |
Content of Learning Activity
Software R, RStudio, git & Markdown. Importation and transformation of datasets. Visualisation of uni-, bi-, and multivariate data. Descriptive statistics; Mean; Median; Standard deviation; Variance; Q-Q plot; Boxplot; Histogram; Statistical population; Sampling; Inference; Probabilities; Statistic distribution; Central limit theorem; Confidence interval; Hypothesis test; Parametric and non parametric tests; Binomial, Poisson, Chi-2, Normal, Student t and F distributions; Student t-test; One and two factors ANOVA; Wilkoxon-Mann-Withney test, Kruskal-Wallis test; Correlation; Pearson; Spearman.
Required Learning Resources/Tools
Not applicable
Recommended Learning Resources/Tools
Not applicable
Other Recommended Reading
Barnier, J., 2018. Introduction à R et au tidyverse (https://juba.github.io/tidyverse/index.html). Ismay, Ch. & Kim A.Y, 2018. Moderndive: An introduction to statistical and data science via R (http://moderndive.com). Wickham, H. & Grolemund, G, 2017. R for data science (http://r4ds.had.co.nz). Cornillon, P.A. Et al, 2008. Statistiques avec R. Presses Universitaires de Rennes. 257pp. Dagnelie, P., 2007. Statistique théorique et appliquée, Volumes I et II (2ème ed.). De Boeck & Larcier, Bruxelles. 511pp (vol. I) 734pp (vol. II).
Mode of delivery
Type of Teaching Activity/Activities
Evaluations
The assessment methods of the Learning Activity (AA) are specified in the course description of the corresponding Educational Component (UE)