Programme d’études 2018-2019English
Algèbre III
Unité d’enseignement du programme de Bachelier en sciences mathématiques à la Faculté des Sciences
CodeTypeResponsable Coordonnées
du service
Enseignant(s)
US-B3-SCMATH-001-MUE ObligatoireVOLKOV MajaS843 - Géométrie algébrique
  • VOLKOV Maja

Langue
d’enseignement
Langue
d’évaluation
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CréditsPondération Période
d’enseignement
  • Français
Français3020000551er quadrimestre

Code(s) d’AAActivité(s) d’apprentissage (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Période
d’enseignement
Pondération
S-MATH-017Algèbre III3020000Q1100.00%

Unité d'enseignement

Objectifs par rapport aux acquis d'apprentissage du programme

  • Comprendre de manière profonde les mathématiques " élémentaires ".
    • Pouvoir utiliser les espaces vectoriels, les applications linéaires et les techniques qui leur sont associées.
    • Comprendre et pouvoir utiliser la théorie naïve des ensembles.
    • Comprendre les structures algébriques de base.
    • Manipuler les acquis antérieurs qui interviennent dans une question.
    • Etre capable de donner des exemples et des contre-exemples (pour les définitions, les propriétés, les théorèmes,...)
  • Comprendre et produire des raisonnements rigoureux en mathématiques.
    • Etre capable de rédiger dans une expression claire et concise.
    • Pouvoir utiliser le vocabulaire mathématique et le formalisme à bon escient.
    • Etre capable de donner du sens à des expressions formelles.
    • Etre capable de s'appuyer sur un dessin pour éclairer une notion, un raisonnement,...
  • Résoudre des problèmes nouveaux.
    • Capacité à l'abstraction, à la manipulation de théories formelles et à l'utilisation de celles-ci pour résoudre des problèmes.
    • Etre capable d'adapter un argument à une situation similaire.
    • Utiliser les connaissances issues de différents domaines pour traiter des questions.

Acquis d'apprentissage UE

Théorie de Galois des extensions finies.
L'objectif de ce cours est d'introduire la théorie éléméntaire des extensions algébriques et de construire la correspondance de Galois pour les extensions finies.

Contenu de l'UE

Extensions de corps, extensions algébriques, clôture algébrique, plongements, groupes de Galois, extensions galoisiennes, correspondance de Galois.

Compétences préalables

Cours d'Algèbre II.

Types d'évaluations Q1 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q1 de l'UE

Sans objet

Types d'évaluations Q2 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q2 de l'UE

Sans objet

Types d'évaluation Q3 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q3 de l'UE

Sans objet

Types d'évaluation rattrapage BAB1 (Q1) pour l'UE

  • Néant

Commentaire sur les évaluations rattr. Q1 de l'UE

Sans objet

Types d'activités

AATypes d'activités
S-MATH-017
  • Cours magistraux
  • Exercices dirigés
  • Démonstrations

Mode d'enseignement

AAMode d'enseignement
S-MATH-017
  • Face à face

Supports principaux

AA
S-MATH-017

Supports principaux non reproductibles

AASupports principaux non reproductibles
S-MATH-017Sans objet

Supports complémentaires

AA
S-MATH-017

Supports complémentaires non reproductibles

AASupport complémentaires non reproductibles
S-MATH-017S. Lang, Structures algébriques, InterEditions.
E. Artin, Galois Theory, Notre-Dame.

Autres références conseillées

AAAutres références conseillées
S-MATH-017Sans objet

Reports des notes d'AA d'une année à l'autre

AAReports des notes d'AA d'une année à l'autre
S-MATH-017Autorisé
(*) HT : Heures théoriques - HTPE : Heures de travaux pratiques encadrés - HTPS : Heures de travaux pratiques supervisés - HD : Heures diverses - HR : Heures de remédiation - Dans la colonne Pér. (Période), A=Année, Q1=1er quadrimestre et Q2=2e quadrimestre
Date de génération : 01/02/2019
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be