Study programme 2021-2022Français
Théorie quantique des champs II
Programme component of Master's in Mathematics : Research Focus à la Faculty of Science

CodeTypeHead of UE Department’s
contact details
Teacher(s)
US-M2-MATHFA-019-MOptional UEBOULANGER NicolasS827 - Physique de l'Univers, Champs et Gravitation
  • BOULANGER Nicolas
  • SKVORTSOV Evgeny

Language
of instruction
Language
of assessment
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CreditsWeighting Term
  • Anglais
Anglais, Français30000066.002nd term

AA CodeTeaching Activity (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Term Weighting
S-PHYS-038Quantum Field Theory II300000Q2100.00%

Programme component

Objectives of Programme's Learning Outcomes

  • Have integrated and elaborate mathematical knowledge.
    • Mobilise the Bachelor's course in mathematics to address complex issues and have profound mathematical expertise to complement the knowledge developed in the Bachelor's course.
    • Use prior knowledge to independently learn high-level mathematics.
  • Carry out major projects.
    • Independently carry out a major project related to mathematics or mathematical applications. This entails taking into account the complexity of the project, its objectives and the resources available to carry it out.
    • Give constructive criticism on the quality and progress of a project.
    • Work in teams and, in particular, communicate effectively and with respect for others.
    • Appropriately use bibliographic resources for the intended purpose.
    • Present the objectives and results of a project orally and in writing.
  • Communicate clearly.
    • Communicate the results of mathematical or related fields, both orally and in writing, by adapting to the public.
    • make a structured and reasoned presentation of the content and principles underlying a piece of work, mobilised skills and the conclusions it leads to.
    • Have sufficient knowledge of English for basic scientific communication.
  • Skill 6: Have acquired professional skills in relation to the objective defining the degree.
    • Have gained expertise and specialised knowledge in a field of mathematics in order to enter fully into the world of research.
    • Demonstrate intuition and creativity to tackle new mathematical problems.
    • Expose high-level mathematical results to a specialised audience.
  • Have integrated and elaborate mathematical knowledge.
    • Mobilise the Bachelor's course in mathematics to address complex issues and have profound mathematical expertise to complement the knowledge developed in the Bachelor's course.
    • Use prior knowledge to independently learn high-level mathematics.
    • Research mathematical literature in an efficient and relevant way.
    • Read research articles in at least one discipline of mathematics.
  • Carry out major projects.
    • Independently carry out a major project related to mathematics or mathematical applications. This entails taking into account the complexity of the project, its objectives and the resources available to carry it out.
    • Give constructive criticism on the quality and progress of a project.
    • Work in teams and, in particular, communicate effectively and with respect for others.
    • Appropriately use bibliographic resources for the intended purpose.
    • Present the objectives and results of a project orally and in writing.
  • Carry out major projects.
    • Independently carry out a major project related to mathematics or mathematical applications. This entails taking into account the complexity of the project, its objectives and the resources available to carry it out.
    • Give constructive criticism on the quality and progress of a project.
    • Work in teams and, in particular, communicate effectively and with respect for others.
    • Appropriately use bibliographic resources for the intended purpose.
    • Present the objectives and results of a project orally and in writing.
  • Communicate clearly.
    • Communicate the results of mathematical or related fields, both orally and in writing, by adapting to the public.
    • make a structured and reasoned presentation of the content and principles underlying a piece of work, mobilised skills and the conclusions it leads to.
    • Have sufficient knowledge of English for basic scientific communication.
  • Adapt to different contexts.
    • Have developed a high degree of independence to acquire additional knowledge and new skills to evolve in different contexts.
    • Critically reflect on the impact of mathematics and the implications of projects to which they contribute.
    • Demonstrate thoroughness, independence, creativity, intellectual honesty, and ethical values.

Learning Outcomes of UE

By the end of the course, the student should know the path-integral formulation of quantum mechanics and quantum field theory. He/she should know the 1-loop renormalisation of Quantum Electro-Dynamics (QED), the Ward-Takahashi identities and the Becchi-Rouet-Stora-Tyutin (BRST) transformations in QED. The student should know the basics of renormalisation group and beta function.

Content of UE

Teaching in English.
Path integral formulation of quantum mechanics and quantum field theory. Definition, gaussian approximation. Quantum Electro-Dynamics (QED). Feynmann diagrams in QED. Classification of the divergent diagrams at one loop. Regularisation and renormalisation. Renormalisation group, beta function. Dimensional regularisation.

Prior Experience

Quantum Field Theory I

Type of Assessment for UE in Q2

  • Presentation and/or works
  • Oral Examination

Q2 UE Assessment Comments

None

Type of Assessment for UE in Q3

  • Presentation and/or works
  • Oral examination

Q3 UE Assessment Comments

None

Type of Teaching Activity/Activities

AAType of Teaching Activity/Activities
S-PHYS-038
  • Cours magistraux

Mode of delivery

AAMode of delivery
S-PHYS-038
  • Face to face

Required Reading

AA
S-PHYS-038

Required Learning Resources/Tools

AARequired Learning Resources/Tools
S-PHYS-038M. Srednicki, Quantum Field Theory, CUP

Recommended Reading

AA
S-PHYS-038

Recommended Learning Resources/Tools

AARecommended Learning Resources/Tools
S-PHYS-038None

Other Recommended Reading

AAOther Recommended Reading
S-PHYS-038L. H. Ryder, Quantum Field Theory, Cambridge U.P. (1996)

Grade Deferrals of AAs from one year to the next

AAGrade Deferrals of AAs from one year to the next
S-PHYS-038Authorized
(*) HT : Hours of theory - HTPE : Hours of in-class exercices - HTPS : hours of practical work - HD : HMiscellaneous time - HR : Hours of remedial classes. - Per. (Period), Y=Year, Q1=1st term et Q2=2nd term
Date de dernière mise à jour de la fiche ECTS par l'enseignant : 12/05/2021
Date de dernière génération automatique de la page : 06/05/2022
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be