

Cutting Inserts Wear Monitoring in AISI 1045 Dry Longitudinal Turning through Cutting Forces: a Case Study

ASM MS&T 2019 - October, 2019 - Portland, OR

Ir. Lucas Equeter

Lucas.Equeter@umons.ac.be

Industrial Context

- High industrial financial stakes
- Example: Oil industry pipe threading
- □ 100 000€/month cutting inserts for one machine-tool
- Cutting insert end-of-life:
 - Operator's hearing
 - (Unaided) visual cutting insert observation Empirical
 - Mirror finish of the thread
 - Tolerance: 5-10 μm
- 1-2 % scrap

Is it possible to save on cutting inserts without worsening the scrap rate?

Cutting tools degradation

Flank

G Flank wear

- Most predictable [1, 2]
- Most advisable [1, 2]
- Mainly due to abrasion [1, 2]
 - End-of-life criterion [3]: Trailing dearance VB=0.3 mm (mean) VB=0.6 mm (max) KR □ Specific to life-testing Industrial practice differs

[1] Sandvik Coromant, Training Handbook - Metal Cutting Technology. AB Sandvik Coromant, 2017. [2] Seco Tools, Turning catalog and technical guide, 2nd ed. SECO TOOLS AB, 2018. [3] "ISO 3685:1993 - Tool-life testing with single-point turning tools."

Cutting tools degradation

Degradation modeling

- Tool life models (Taylor's model) [1] $\widehat{\mathbb{E}}$ Description of degradation trajectory [2] \mathbb{P}
- Degradation models
 - Archard [3]
 - Takeyama and Murata [4]
 - Usui [5]

$v_{c1} > v_{c2} > v_{c3} > v_{c4}$ V_{c1} Wear limit VB = 0.3 mm V_{c2} V_{c4} Flank wear ∽ T_{c4} 1st phase 2nd phase 3rd phase Accelerated wear zone Initial wear Steady state region zone Cutting time t (min)

Arrhenius laws

- [1] V. P. Astakhov and J. P. Davim, "Tools (Geometry and Material) and Tool Wear," in Machining Fundamentals and Recent Advances, Springer-V., J. P. Davim, Ed. London; Springer London, 2008, pp. 29-57.
- [2] Y. Altintas. Manufacturing automation. Cambridge University Press. 2012.
- [3] J. F. Archard, "Contact and Rubbing of Flat Surfaces," J. Appl. Phys., vol. 24, no. 8, pp. 981–988, 1953.
- [4] H. Takevama and R. Murata, "Basic Investigation of Tool Wear," J. Eng. Ind., vol. 85, no. 1, p. 33, 1963.
- [5] E. Usui, T. Shirakashi, and T. Kitagawa, "Analytical prediction of cutting tool wear," Wear, vol. 100, no. 1–3, pp. 129–151, 1984.

Degradation monitoring

Condition monitoring

- Vibratory frequential contents below 10 kHz (RMS) [1]
- Noise (change in pitch) [2]
- Cutting forces (RMS, $\frac{F_f}{F_c}$ ratio) [3]
- Tool temperature [4]
- Quality (roughness, dimensional deviation) [5]

D. R. Salgado and F. J. Alonso, "Tool wear detection in turning operations using singular spectrum analysis," *J. Mater. Process. Technol.*, vol. 171, no. 3, pp. 451–458, 2006.
M.-C. Lu and E. Kannatey-Asibu, "Analysis of Sound Signal Generation Due to Flank Wear in Turning," *J. Manuf. Sci. Eng.*, vol. 124, no. 4, p. 799, 2002.
A. Attanasio, E. Ceretti, A. Fiorentino, C. Cappellini, and C. Giardini, "Investigation and FEM-based simulation of tool wear in turning operations with uncoated carbide tools," *Wear*, vol. 269, no. 5–6, pp. 344–350, 2010.
L.-J. Xie, J. Schmidt, C. Schmidt, and F. Biesinger, "2D FEM estimate of tool wear in turning operation," *Wear*, vol. 258, no. 10, pp. 1479–1490, 2005.

[5] L. Equeter, R. Devlamincq, F. Ducobu, C. Dutoit and P. Dehombreux, "Use of Longitudinal Roughness Measurements as Tool End-of-Life Indicator in AISI 1045 Dry Longitudinal Turning," *Material Science Forum*, in press (2019)

Degradation monitoring

Condition monitoring

- Vibratory frequential contents below 10 kHz (RMS) [1]
- Noise (change in pitch) [2]
- **Cutting forces (RMS,** $\frac{F_f}{F_c}$ ratio) [3]
- Tool temperature [4]
- Quality (roughness, dimensional deviation) [5]

D. R. Salgado and F. J. Alonso, "Tool wear detection in turning operations using singular spectrum analysis," *J. Mater. Process. Technol.*, vol. 171, no. 3, pp. 451–458, 2006.
M.-C. Lu and E. Kannatey-Asibu, "Analysis of Sound Signal Generation Due to Flank Wear in Turning," *J. Manuf. Sci. Eng.*, vol. 124, no. 4, p. 799, 2002.
A. Attanasio, E. Ceretti, A. Fiorentino, C. Cappellini, and C. Giardini, "Investigation and FEM-based simulation of tool wear in turning operations with uncoated carbide tools," *Wear*, vol. 269, no. 5–6, pp. 344–350, 2010.
L.-J. Xie, J. Schmidt, C. Schmidt, and F. Biesinger, "2D FEM estimate of tool wear in turning operation," *Wear*, vol. 258, no. 10, pp. 1479–1490, 2005.
L. Equeter, R. Devlamincq, F. Ducobu, C. Dutoit and P. Dehombreux, "Use of Longitudinal Roughness Measurements as Tool End-of-Life Indicator in AISI 1045 Dry

Longitudinal Turning," Material Science Forum, in press (2019)

University of Mons Lucas Equeter | ASM MS&T - October 2019 - Portland, OR

Experimental Setting

- □ Workpiece: cylindrical bars
 - AISI 1045 (154 HV₃₀)
 - **250** mm length, 58 mm diameter, 10 passes with $a_p = 0.7$ mm
 - Wear, Forces and roughness measurements every 10 passes

University of Mons

Tool Wear

Before

30 min dry turning

University of Mons

Tool Wear

Cutting Forces Measurement

- □ Cutting, feed and radial force
 - Triaxial Kistler 9257B force sensor
 - Sensitivity: -7.5 pC/N (F_f and F_r); -3.7 pC/N (F_c)
 - RMS values over the pass

University of Mons

Cutting Forces and Tool Wear

Cutting, Feed and Radial Force

- Increases of resp. 9%, **40%** and 10%
- Locally important increase prior to tool end-of-life

Correlation vs. VB _{B,mean}					
	Pearson	95 %	p-value		
	correlation	confidence			
	coefficient	interval			
VB _{B.mean} vs F _c	0.81	[0.47, 0.94]	< 0.001		
VB _{B.mean} vs F _f	0.87	[0.63, 0.96]	< 0.001		
VB _{B.mean} vs F _r	0.51	[-0.05, 0.83]	0.07		

Correlation vs. $VB_{B\!,max}$

	Pearson	95 %	p-value
	correlation	confidence	
	coefficient	interval	
VB _{B.max} vs F _c	0.88	[0.63, 0.96]	< 0.001
VB _{Bmax} vs F _f	0.93	[0.78, 0.98]	< 0.001
VB _{Bmax} vs F _r	0.48	[-0.10, 0.81]	0.10

Force ratio $\frac{F_f}{F_c}$ and Tool Wear

- Major indicator of tool wear in literature
 - 29% increase
 - Locally important increase prior to tool end-of-life

Correlation vs. $VB_{B,mean}$ and $VB_{B,max}$				
	Pearson	95 %	p-value	
	correlation	confidence		
	coefficient	interval		
VB _{B,mean} vs F _f /F _c	0.86	[0.59, 0.96]	< 0.001	
VB _{B,max} vs F _f /F _f	0.90	[0.69, 0.97]	< 0.001	

Roughness Measurement

- □ Total, arithmetic and quadratic roughness
 - Rt = total height of the profile
 - Ra = arithmetic average roughness
 - Rq = quadratic average roughness

- Diavite DH-6 roughometer
- 3 longitudinal measurements on each bar, separated by 120°
- Gaussian filter in accordance with ISO 16610

University of Mons

Roughness and Tool Wear

□ Total, arithmetic and quadratic roughness

- Increases of resp. 75, 47 and 64 %
- Indicator may be considered
 - Not monotonous evolution
 - Not on-line measurement
- Locally important increase at tool end-of-life

Roughness and Tool Wear

□ Arithmetic roughness as an indicator of tool wear
□ ρ=0.95, Cl95 is [0.86, 0.98] → very strong correlation

□ p<.001 \rightarrow significant

	Pearson	95 %	p-value
	Correlation	confidence	
	coefficient	interval	
VB _B vs R _a	0.95	[0.86, 0.98]	< 0.001
VB _B vs R _t	0.62	[0.17, 0.85]	0.011
VB _B vs R _a	0.90	[0.72, 0.96]	< 0.001

Conclusions

Cutting forces indicators may be extremely relevant

- On-line condition monitoring
- RMS value is sufficient to gain valuable knowledge

But...

□ Image of tool wear rather than production quality

Roughness indicators may be extremely relevant

- Focus on production quality hence value
- □ Relevance of standard-recommended indicator questioned
 - □ Flank wear \rightarrow wear on nose radius and trailing edge

But...

- No account of other quality indicators
- Residual stresses, dimensional accuracy, etc.
- Based on sampled quality control
- Complex for on-line use

Thank you for your attention!

